
Global and Local Search Algorithms for Concave Cost

Transshipment Problems

SHANGYAO YAN, DER-SHIN JUANG, CHIEN-RONG CHEN and
WEI-SHEN LAI
Department of Civil Engineering, National Central University. Taiwan 32054, R.O.C. (e-mail:
t320002@cc.ncu.edu.tw)

(Received 15 July 2003; accepted in revised form September 2004)

Abstract. Traditionally, the minimum cost transshipment problems have been simplified as
linear cost problems, which are not practical in real applications. Recently, some advanced
local search algorithms have been developed that can directly solve concave cost bipartite

network problems. However, they are not applicable to general transshipment problems.
Moreover, the effectiveness of these modified local search algorithms for solving general
concave cost transshipment problems is doubtful. In this research, we propose a global search

algorithm for solving concave cost transshipment problems. Efficient methods for encoding,
generating initial populations, selection, crossover and mutation are proposed, according to
the problem characteristics. To evaluate the effectiveness of the proposed global search
algorithm, four advanced local search algorithms based on the threshold accepting algorithm,

the great deluge algorithm, and the tabu search algorithm, are also developed and are used for
comparison purpose. To assist with the comparison of the proposed algorithms, a randomized
network generator is designed to produce test problems. All the tests are performed on a

personal computer. The results indicate that the proposed global search algorithm is more
effective than the four advanced local algorithms, for solving concave cost transshipment
problems.

Key words: Concave cost, Genetic algorithm, Global search, Local search, Transshipment
problems

1. Introduction

Transshipment problems are usually formulated as minimum cost network
flow problems. Traditionally, in a minimum cost network flow problem the
unit transit cost of each arc is assumed to have a fixed value. That is, the
arc cost function is approximately linear. Although a mathematical model
with a linear arc cost function is easier to solve, it may not reflect the
actual transportation cost in real operations. In practice, the unit cost for
transporting freight usually decreases as the amount of freight increases.
The cargo transportation cost in particular is mainly influenced by the
cargo type, the loading/unloading activities, the transportation distance,
and the amount. In general, each transportation unit cost decreases as the
amount of cargo increases, due to economy of scale in practice. Hence, in

Journal of Global Optimization (2005) 33: 123–156 � Springer 2005
DOI 10.1007/s10898-004-3133-5

actual operations the transportation cost function can usually be formu-
lated as a concave cost function. Several cost function types that have
arisen in concave cost network flow problems can be found in the litera-
ture, such as concave cost functions, piecewise concave cost functions, and
linear fixed charge cost functions (Yan and Luo, 1998, 1999).
A minimum concave cost network flow problem is characterized as NP-

hard (Garey and Johnson, 1979). It is difficult to find an optimal solution
for a large-scale problem in a limited time. Traditionally, minimum con-
cave cost network flow problems have usually been solved in the following
three ways: (1) by solving a series of linear programming approximations
to the original problem; (2) by local search methods designed to send an
extreme flow by searching among candidate solutions; and (3) by meta-
heuristic methods, such as the tabu search (TS).
Recently, Yan and Luo (1998, 1999) have employed the TS, threshold

accepting (TA), and simulated annealing (SA) methods to develop several
advanced local search algorithms to solve bipartite transportation network
problems. It has been shown that these algorithms are more effective than
the traditional linear approximation methods and local search methods.
However, these advanced local search algorithms are not applicable to gen-
eral transshipment problems. As well, they may lead to degeneracy prob-
lems when they are modified and applied to minimum concave cost
network flow problems, which would lead to low efficiency in the search
for an optimal solution. However, a genetic algorithm (GA), which is
designed for global optimal solution searching, has led to good results in
many applications (Goldberg, 1989). Therefore, here we utilize the GA to
develop a global search algorithm for solving concave cost transshipment
problems. Efficient encoding, initial population generation, as well as cross-
over and mutation strategies have been developed according to the prob-
lem’s characteristics, to enhance the algorithm efficiency. To efficiently
search for feasible solutions, a network flow algorithm that can efficiently
modify an infeasible solution to become a feasible one has also been devel-
oped. Four efficient local search algorithms, based on the TA, the great
deluge algorithm (GDA) and the TS, are also developed to evaluate the
proposed global search algorithm.
To simplify the development of the algorithms, we will focus on pure

(single commodity) network flow problem without arc flow upper bounds.
Note that a network flow problem with arc flow upper bounds can be
modified to become an equivalent network flow problem without arc flow
upper bounds (Ahuja et al., 1993). Multi-commodity network flow prob-
lems with concave arc costs are expected to be more complicated than pure
network flow problems and can be researched in the future.
The rest of this paper is organized as follows: First, we review the litera-

ture regarding the solution of concave cost network flow problems. Then

124 SHANGYAO YAN ET AL.

we formulate a mathematical model for a concave cost transship problem.
Thereafter, an efficient global search algorithm and several advanced local
search algorithms for solving the problem are developed. Many problem
instances are generated and tested to evaluate the algorithm’s perfor-
mances. Finally, we give some conclusions and suggestions for future
research.

2. Literature Review

In this section, previous research on the traditional concave cost transpor-
tation problems is reviewed first. Various meta-heuristics for solving com-
binatorial optimization problems are then discussed. Finally, the concepts
to be used in a global search algorithm and four advanced local search
algorithms are presented.

2.1. CONCAVE COST TRANSPORTATION PROBLEMS

Concave cost transportation problems are characterized as NP-hard
(Larsson et al., 1994). In general, it is computationally expensive to find
the optimal solution for a large-scale NP-hard problem. Many algorithms
have been developed for solving these problems. Most approaches have
employed the traditional mathematical programming techniques, such as
linear approximation, Lagrangian relaxation, the sub-gradient method, the
branch-and-bound method, and dynamic programming, to solve the prob-
lems (e.g. Zangwill, 1968; Rech and Barton, 1970; Yaged, 1971; Gallo and
Sodini, 1979; Gallo et al., 1980; Hall, 1983; Blumenfeld et al., 1985;
Jordan, 1986; Balakrishnan and Graves 1989; Thach, 1992; Guisewite and
Pardalos, 1993; Larsson et al. 1994; Nourie and Guder 1994; Amiri and
Pirkul, 1997). Note that Zangwill (1968) has pointed out the fact that the
major difficulty in solving concave cost network flow problems comes from
the existence of the enormous number of local optima in the search space.
Consequently, the traditional approaches may be inefficient in terms of
enumerating all the local optima to find the global optimum. Some algo-
rithms based on the characteristics of concave cost network flows have
been developed to improve the solution efficiency (e.g. Kuhn and Baumol,
1962; Suwan and Sawased, 1999; Yan and Luo 1999; Kim and Pardalos,
2000).

2.2. RECENT META-HEURISTICS FOR COMBINATORIAL OPTIMIZATION PROBLEMS

Traditionally, the local search approach has been used to find the optimal
solution for combinatorial optimization problems. However, there can be
an enormous number of local optima in the solution set of this type of

GLOBAL AND LOCAL SEARCH ALGORITHMS 125

optimization problem. A local search can easily fall into a local optimum,
the objective of which is far away from the optimal one.
To overcome this weakness in the traditional local search method, several

meta-heuristic algorithms have recently been developed, with a traditional
local search as the core, combined with high-level meta-strategies for jump-
ing out of the local optima found in neighborhood searches, thus finding a
better solution (Osman and Kelly, 1996). The aforementioned high-level
meta-strategies are mostly employed for the simulation of the behavior and
logic of physics, chemistry, natural science, and human thinking.
Some examples of recent meta-heuristics include: the SA (Kirkpatrick

et al., 1983), the TS method (Glover, 1989, 1990), the GA (Goldberg, 1989),
the TA (Dueck and Scheuer, 1990), the GDA (Dueck, 1993), the record-to-
record travel method (Dueck, 1993), the noising method (Charon and Hur-
dy, 1993), the neural network (Reeves, 1993), and the search space smooth-
ing method (Gu and Huang, 1994). Note that the neural network algorithm
and the GA differ from the other meta-heuristics which are classified as
neighborhood search algorithms. In comparison with traditional local search
algorithms, these algorithms can allow the search to escape from a local
optimum and can usually lead to good results for many applications. Even
more recently, some of these algorithms have been combined to produce
more efficient hybrid algorithms. For example, Booker (1987) has incorpo-
rated a SA approach and a GA to develop an efficient hybrid algorithm.
In the past, these types of meta-heuristics were rarely applied to the solu-

tion of concave cost network flow problems. To the best of the authors’
knowledge, only Yan and Luo (1998, 1999) have developed a family of
algorithms combining TS, TA, and SA for solving concave cost bi-partite
transportation network problems.

2.3. GENETIC ALGORITHMS

GAs, first proposed by Dr. John Hollard in 1975, have been applied widely
in diverse fields such as engineering, economics, finance, manufacturing,
and commerce. A detailed description of the method is given in Goldberg
(1989). The most praised features of the GAs are their robustness, parallel-
ism, flexibility, good problem-solving capability, and domain independent
search. In general, their search range is wider than general neighborhood
search algorithms (Reeves, 1997). Recently, there has being increasing
amounts of research work adopting GAs for solving difficult combinatorial
optimization problems (Gen and Cheng, 1997).
Simple GAs have been used to efficiently solve many well-known prob-

lems. However, these may not be suitable for application in other unknown
fields (Kershenbaum, 1997). To improve the solution quality and efficiency

126 SHANGYAO YAN ET AL.

of the simple GA, extensive research has been devoted to the influence of
the parameters, such as the population size, reproduction strategies, cross-
over, mutation, fitness function, and encoding schemes (e.g. see DeJong,
1975; Booker, 1987; Davis, 1989; Thierens and Goldberg, 1994; Rudolph,
1994; Reeves, 1997).
Although some strategies may speed up algorithm convergence, none of

them can ensure that solutions will not be trapped into a local optimum.
To improve this deficiency, and to increase the adaptability of the method,
several hybrid GAs have been proposed. For example, Seiichi et al. (1995)
has combined a GA and an SA to develop a GSA. Cheng et al. (2000)
have combined Lagrangian relaxation and GAs to develop an LRGA.
Jeffrey and Christopher (1994) has proposed a penalty method to handle
infeasible solution, and Srinivas and Patnaik (1994) has used adaptive
genetic algorithms (AGA) to automatically change the crossover and muta-
tion probability.
Although GAs have been extensively used to solve engineering and man-

agement problems, their application to network problems is still limited.
Palmer and Kershenbaum (1995) developed a GA using an Link and Node
Biased (LNB) encoding method to solve an optimal communication span-
ning tree problem. Abuali et al. (1995) developed a GA that used a deter-
minant encoding method to solve a probabilistic minimum spanning tree.
Taguhi et al. (1998) presented a GA, with a non-uniform mutation and an
arithmetic crossover, to solve an optimal flow assignment problem in han-
dling computer networks.

2.4. ADVANCED LOCAL SEARCH ALGORITHMS

Advanced local search algorithms, such as SA, TA, GDA, and TS, can
usually lead to good results in various applications (e.g. see Dueck and
Scheuer, 1990; Dueck, 1993; Yan and Luo, 1998, 1999). In general, TA
and GDA have been superior to SA in many tests. Therefore, we employ
TA, GDA and TS to develop four efficient local search algorithms, which
can be compared with the proposed global search algorithm. These
advanced local search algorithms are as follows.

2.4.1. Simulated Annealing (SA)

SA is a stochastic optimization algorithm. The main difference between SA
and the local search method is that, when finding a solution to a given
problem, the latter technique searches for solutions in a downhill direction.
As a result, if a local optimal solution has been reached using a local
search method, there is no way to bring the search out of this local opti-
mum. This drawback can be overcome in SA by allowing an occasional
jump out of a possibly inferior region. In other words, the SA technique

GLOBAL AND LOCAL SEARCH ALGORITHMS 127

does not always search for solutions in a downhill direction. To examine
whether it is acceptable to move from the previous solution to a new solu-
tion, SA determines the difference between the objective value of the previ-
ous solution and that of the new one. If the difference is favorable, the
previous solution is discarded and replaced by the new one, as is done in a
local search technique. If the difference is not favorable, the new solution
is accepted along with a certain probability, which depends on the amount
of the difference between the two solutions. After being first introduced by
Kirkpatrick et al. (1983) to solve VLSI layout and graph partitioning prob-
lems, SA has been applied to many other NP-complete problems.

2.4.2. Threshold Accepting (TA)

TA, a method similar to SA, was first introduced by Dueck and Scheuer
(1990). The essential difference between SA and TA is the different accep-
tance rules. To examine whether it is acceptable to move from the previous
solution to a new solution, TA determines the difference between the objec-
tive value of the previous solution and that of the new solution. If the dif-
ference is favorable, the previous solution is discarded and the new
solution takes its place, which is the same as in SA. When the difference is
not favorable, the new solution is accepted if the difference falls within a
given threshold. Intuitively, TA accepts every new solution which is ‘‘not
much worse’’ than the previous one, while SA will only accept worse solu-
tions with rather small probabilities. TA is simpler than SA, because with
TA it is not necessary to compute probabilities or to make random deci-
sions. Dueck and Scheuer (1990) in their studies found that TA performed
better than SA.

2.4.3. Great Deluge Algorithm (GDA)

GDA, as proposed by Dueck (1993), is a deterministic algorithm similar to
TA. The difference between GDA and TA is that TA considers whether
the difference between the new and previous solutions falls within a thresh-
old of acceptance, whereas GDA considers whether the objective value of
the new solution for a minimization problem is below a standard level
(water level). Whether the improvement for the new solution over the pre-
vious one is in a positive or negative direction, the solution will be
accepted if it is below the standard level (for a minimum problem). Similar
to TA, GDA also sets an initial water level, and then reduces this level
gradually until reaching a designated convergent one.

2.4.4. Tabu Search (TS)

TS, proposed by Glover (1989, 1990), considers all moves, both ‘‘up’’ and
‘‘down,’’ except for a certain prohibited or ‘‘tabu’’ set. The ‘‘tabu’’ moves

128 SHANGYAO YAN ET AL.

are kept as a list of length L, which effectively prevents the L most recent
moves from being reversed. Each time a move is made, its ‘‘inverse’’ is
added to the list, while the oldest move on the list is dropped. If the length,
l, is too small, there is a chance that the method will simply cycle around
the same sequences indefinitely, but this seems not to occur if the L is large
enough. This can be thought of as simulating a form of ‘‘short-term mem-
ory’’, so that the procedure can recognize (and avoid) areas of the solution
space that it has already encountered. Glover (1989, 1990) has also dis-
cussed ways of simulating ‘‘long-term memory’’ and procedures for over-
riding the basic algorithm by using ‘‘aspiration levels’’. The approach has
been well documented by Glover.

2.5. DISCUSSION

From the above review, we found that concave cost transshipment problems
have been traditionally solved using such algorithms as the branch-and-
bound method, the dynamic programming method, the modified network
simplex algorithms, the Lagrangian relaxation with sub-gradient methods,
and other heuristic algorithms. Although some modern meta-heuristics,
such as TS, TA, and SA, are useful for solving concave cost bi-partite net-
works (Yan and Luo, 1998, 1999), they have not been applied to concave
cost transshipment problems. In other words, their performance in relation
to general transshipment problems is unknown; possibly they will be easily
confined to local optima. As well, most network problems discussed in the
literature have belonged to particular networks (e.g. Hall, 1983; Yan and
Luo, 1999; Suwan and Sawased, 1999). In this research, however, we aim to
develop global and local search algorithms for solving minimum cost trans-
shipment problems with concave arc cost functions.

3. Problem Formulation

Let a directed network, G ¼ ð �N; �AÞ, be a transshipment network with con-
cave arc cost functions, where �N is the set of all nodes, and �A is the set of
all arcs. The problem can be formulated as follows:

Minimize
X

ij2a
fijðxijÞ ð1Þ

S.T.
X

j

xij �
X

k

xki ¼ bi 8i 2 �N ð2Þ

xijP0 8ði; jÞ 2 �A ð3Þ
The objective is to minimize the total cost, as given in (1). The arc (i, j)
cost function, fijðxijÞ, is concave. Equation 2 represents the flow conserva-
tion constraint at every node. Note that: (1) if node i is a supply node,

GLOBAL AND LOCAL SEARCH ALGORITHMS 129

then bi > 0; (2) if node i is a demand node, then bi < 0, and (3) if node i is
a terminal, then bi ¼ 0. We assume that every arc flow is at least zero, as
shown in Equation 3. Therefore, the problem is to transport commodities
from all supply nodes to all demand nodes at a minimum transportation
cost. For ease of algorithm development, the following assumptions are
made:

(1) Each arc flow is between zero and infinity.
(2) Referring to Yan and Luo (1998, 1999), the arc cost function is

assumed to be fij ¼ cij
ffiffiffiffiffi
xij
p

, where xij denotes the flow of arc (i, j),
and cij is the associated arc constant. Note that the algorithms pro-
posed in this research can be suitably modified and applied to solve
the problems with other types of concave cost functions.

(3) The total node supply equals to the total node demand, so that the
network flow conservation constraint is ensured.

This problem is a non-linear minimum concave cost network flow problem,
which is characterized as NP-hard. In a minimum cost network flow prob-
lem, a feasible spanning tree, corresponding to a feasible solution, is desig-
nated in the simplex method a basic feasible solution. Usually, a feasible
spanning tree in this type of problem can be expressed as an extreme point
(Gallo et al., 1980). Since every arc cost function is concave, the objective
function in (1) is also concave (Ahuja et al., 1993). For a concave cost
function, there is at least one optimal solution located at an extreme point
(Larsson et al., 1994). Furthermore, if all the parameters are integers, every
extreme point is an integer solution, because of the integrality property. As
a result, the optimal solution is also an integer. Similar to traditional inte-
ger programming problems, where integer solutions are spread throughout
the solution set, the candidates of optimal solutions are spread throughout
the linear solution set. Thus, traditional combinatorial optimization tech-
niques, such as global and local search algorithms, can be applied to our
problem. Hence, in this research we are attempting to develop a global
search algorithm to solve the problem. We also develop four advanced
local search algorithms for the evaluation of the global search algorithm.
We note that, in the simplex method, if one of the basic variables in a

basic feasible solution (an extreme point) is zero, then the solution is
degenerate. For the network problem, there always exist arcs with zero
flow (Yan, 1996). Therefore, using local search algorithms to solve the
problem may lead to degeneracy problems in neighborhood searches,
which may be handled by the appropriate mechanisms (e.g. the TS tech-
nique). On the other hand, the crossover approach, which is a non-local
search typically used in GA, will significantly reduce these degeneracy
problems. In this respect, it may be more effective than local search algo-
rithms in solving network flow problems.

130 SHANGYAO YAN ET AL.

4. Development of a Global Search Algorithm

In this section, we first propose a new encoding method to formulate a net-
work flow solution, then an approach to adjust an infeasible flow to
become a feasible one. Two methods for generating an initial population
are proposed. Thereafter, the selection, reproduction, crossover and muta-
tion operations are developed. Finally, we introduce the new population in
the succeeding generation.

4.1. ENCODING

The encoding for an individual (a solution), which is the basis of GA, typi-
cally affects its efficiency. As the design of variables in a network flow
problem is not natural for GA applications, the encoding in GA is gener-
ally not easy. Traditionally, the decision variables for a combinatorial opti-
mization problem can be coded either directly or indirectly (Davis, 1987;
Gen and Cheng, 1997). Take the spanning tree, which is often used in net-
work applications, as an example. Direct encoding of every arc in the span-
ning tree is recorded. Although direct encoding requires no decoding
process, it is usually longer. In contrast, the length of indirect encoding is
usually shorter than direct encoding, but a decoding process is required to
convert it to the original solution.
Abuali et al. (1995) and Palmer and Kershenbaum (1995) respectively

have proposed two indirect encoding methods for solving undirected net-
works. These methods are however not applicable to directed networks.
Taguhi et al. (1998) proposed using an indirect encoding method for directed
networks with a flow conservation constraint at every node; however, the
method may result in an infeasible solution, because the flow conservation
condition may be destroyed after the crossover and mutation operations.
To meet our problem solution needs, we use a predecessor array to record

the spanning tree, as is commonly employed in computer data structures. In
this method, n elements in a one-dimensional array are used to store the val-
ues of the predecessors of nodes 1 to n, respectively, in the network. There-
fore, the encoding length is equal to the number of nodes. Each node in the
spanning tree corresponds to a unique predecessor. The root’s predecessor is
zero. Note that in a directed network, the encoding method does not ensure
a feasible spanning tree after crossover or mutation operations. In this case,
the flow augmentation algorithm, as proposed by Yan and Yang (1996), is
employed to adjust an infeasible spanning tree to become a feasible one.
Compared with the encoding method proposed by Taguhi et al. (1998),

the encoding method proposed in this paper can reduce the number of
encoding and decoding steps leading to a shorter encoding length. Note
that using the flow augmentation algorithm to adjust an infeasible solution
to become a feasible one may cause the loss of some genes, but it does

GLOBAL AND LOCAL SEARCH ALGORITHMS 131

offer the opportunity to search for different genes concurrently. Conse-
quently, by incorporating the encoding method into crossover and muta-
tion operations, the resultant global search algorithm can efficiently reach
a near optimal solution. We also note that our encoding method can be
applied to both directed and undirected networks. For example, as shown
in Figure 1, the encoding of the undirected spanning tree B is {0, 1, 4, 1, 4,
5, 3, 3, 7}, and the encoding of the directed spanning tree C is {0, 1,)4,
�1, 4,)5,)3,)3,)7}. In the directed spanning tree C, a positive sign
indicates that the arc’s direction moves from the associated node to its pre-
decessor, and a negative sign indicates the arc’s direction is from the node’s
predecessor to itself.

4.2. ADJUSTMENT OF INFEASIBLE SOLUTIONS

An infeasible solution generated by crossover or mutation may contain
cycles or a set of disconnected sub-networks. Note that the cycles or sub-
networks contain arcs that were previously in a spanning tree before cross-
over or mutation. In this research we use the least cost flow augmentation
algorithm (Yan and Yang, 1996) to adjust infeasible solutions to become a
feasible spanning tree. The algorithm is described as follows:

1. Connect all disconnected sub-networks between any two sub-net-
works by adding a number of arcs, which are not in the sub-net-
works, to make a connected network. Note that these arcs are found
using a graph search technique. Let these arc flows be zero and their
arc costs be unchanged. Solve the least cost flow augmentation cycle.

2. Employ the flow augmentation algorithm to augment the flow in the
cycle until a reverse arc flow is reduced to zero. Delete this arc and
eliminate the cycle.

Repeat the two steps until all cycles are eliminated to find the feasible
spanning tree.

Figure 1. Encodings B and C.

132 SHANGYAO YAN ET AL.

4.3. GENERATION OF THE INITIAL POPULATION

Two heuristics for generating the initial population are proposed. The first
is the linear cost initial solution algorithm, and the other is the concave
cost initial solution algorithm.

4.3.1. Linear Cost Initial Solution Algorithm (LCISA)

The algorithm is outlined as follows:

Step 1: Set each arc cost to be the average unit transportation cost at
the current flow (see Yan and Luo, 1999). That is, for an arc (i,
j) with flow xij, its arc cost is set to be cij=

ffiffiffiffiffi
xij
p

. Note that if arc
(i, j) has no flow, then its average unit transportation cost (i.e.
cij=

ffiffiffiffiffi
xij
p

) at the zero flow is undefined. To facilitate problem solv-
ing, as done in Yan and Luo (1999), we set its flow to be one,
for the approximation of the arc cost. As a result, the arc cost is
set to be cij.

Step 2: Randomly select a supply node i and a demand node j and solve
for the shortest path from node i to node j.

Step 3: Determine the maximum amount of goods, Tij, that can be
transported from supply node i to demand node j, that is,
Tij ¼ min (si, dj), where si is the remaining supply for node i,
and dj is the remaining demand for node j. Transport Tij

through the shortest path from node i to node j.
Step 4: Deduct Tij from node i’s supply and node j’s demand, and

update the arc flows along the path.
Step 5: If there is no node with supply or demand, stop; else, go to Step 2.

We use LCISA to solve for a feasible solution. If the solution is not a
spanning tree, then the least cost flow augmentation algorithm can be used
to adjust it to become feasible. Note that each arc cost is set in Step 1 and
does not change, which speeds up the algorithm. Finally, we can use the
algorithm to generate enough feasible solutions to fit the designated popu-
lation size, Np.

4.3.2. Concave Cost Initial Solution Algorithm (CCISA)

Based on the characteristics of concave cost network flow problems (Kuhn
and Baumol, 1962), if flows are assigned to arcs when the adjacent nodes
have a greater supply or demand than other nodes, then the cost may be
reduced. In addition, the total cost tends to be reduced if the arc flows
tend to be zero or the allowed maximum amount. In other words, an all-
or-nothing assignment rule should help to reduce transshipment costs. The
heuristic based on this concept is outlined as follows:

GLOBAL AND LOCAL SEARCH ALGORITHMS 133

Step 1: Set each arc cost to be the average unit transportation cost at
the current flow. Note that, similar to that is done in LCISA, if
an arc has no flow, then its flow is set to be one to approximate
the arc cost.

Step 2: Choose a node (i) with the largest remaining node supply. Solve
for the shortest paths from node i to all other demand nodes.

Step 3: Randomly choose a node (j) from among the three nodes with
the three largest remaining node demands, where node j is reach-
able from node i.

Step 4: Determine the maximum amount of goods, Tij, that can be
transported from supply node i to demand node j, that is,
Tij ¼ min (si, dj), where si is the remaining supply for node i,
and dj is the remaining demand for node j. Transport Tij

through the shortest path from node i to node j.
Step 5: Deduct Tij from node i’s supply and node j’s demand, and

update the arc flows along the path.
Step 6: If there is no node with supply or demand, stop; else, go to

Step 1.

We use CCISA to solve for a feasible solution. If the solution is not a span-
ning tree, then use the least cost flow augmentation algorithm to adjust it to
become a feasible one. Finally, we can use the algorithm to generate enough
feasible solutions to fit the designated population size, Np. Note that there
are two points where CCISA differs from LCISA. First, instead of using a
constant arc cost, each arc cost in CCISA is updated once its flow has chan-
ged. Second, instead of randomly selecting a supply/demand node pair,
CCISA chooses the node with the largest remaining node supply and a node
randomly selected from among the three reachable nodes with the three
largest remaining demands, to solve for the shortest path, and to transport
the maximum allowable amount of goods along this path.

4.4. SELECTION AND REPRODUCTION

Selection is a process in which suitable individuals are selected for cross-
over. Each individual corresponds to a feasible spanning tree. In this
research we employ the roulette wheel method (Goldberg, 1989) to select
suitable individuals to perform reproduction and crossover. Before selec-
tion, the individuals are sorted in ascending order of their fitness values.
Note that the fitness value associated with an individual is defined as its
objective value, as has commonly been done in the past (Davis, 1991). The
population is divided into K sets of individuals, so that each set contains
the same number of individuals. In the roulette wheel method, the best set
occupies K units, the second-best set K)1 units, the third-best set

134 SHANGYAO YAN ET AL.

K) 2 units, and so on. Consequently, the worst set occupies one unit. In
general, a set with a larger area in the roulette wheel has a higher probabil-
ity of being selected. Using the roulette wheel method, we first select a set,
then randomly select an individual from the set. The process can be
repeated until enough individuals have been selected. The determination of
the K value necessary for obtaining good quality solutions will be tested in
Section 6.

4.5. CROSSOVER

Crossover is useful for exchanging parts of genes for selected individuals to
produce new individuals. Some commonly used crossover operators are one-
point crossovers, two-point crossovers, and uniform crossovers (Gen and
Cheng, 1997). After many tests, we found that, due to the characteristics of
the spanning tree, both the one-point and the two-point crossover opera-
tions produced offspring that were widely dissimilar from the parent popula-
tion. Since it is computationally expensive to adjust very infeasible offspring
to become feasible, the uniform type of crossover is adopted in this research.
The uniform crossover method is performed as follows: Given two span-

ning trees, we first set a number, L, of genes to be exchanged, each gene
being associated with an arc. Then we randomly select L arcs with positive
flows from each of the two spanning trees. After this, we exchange these
two sets of arcs, obtaining two new solutions, each possibly being infeasi-
ble. Finally, we employ the flow augmentation algorithm to adjust the
infeasible spanning trees to become feasible ones. The proposed crossover
method has the following three advantages. First, according to the charac-
teristics of the concave cost function, the greater the flow that passes
through the same arc, the better the objective value that can be obtained.
Selecting arcs with positive flows implies the selection of superior genes. As
a result, the crossover method helps evolve good solutions. Second, in con-
junction with the mutation (to be addressed later), which selects arcs that
are not in the spanning tree (their flows are 0) and is complementary to
the crossover, good results can possibly be obtained. Third, any infeasible
solutions can usually be efficiently adjusted to become feasible. Conse-
quently, diverse solutions can be examined and good ones obtained.

4.6. MUTATION

The test results indicate that not many good individuals can be obtained
after a crossover operation. Rudolph (1994) has mentioned that with a
simple GA it is very difficult to converge to the optimal solution; however,
if a mutation mechanism similar to a local search algorithm can be
designed, then the solution quality can usually be improved. Thus, we

GLOBAL AND LOCAL SEARCH ALGORITHMS 135

employ a traditional local search algorithm as the mutation operator, to
improve the individuals evolved from crossover. Coupled with the cross-
over operator, which can help the search by jumping out of local optima,
the mutation method is expected to assist in searching for the global
optimum.
The mutation method is outlined as follows: First, for each feasible span-

ning tree produced following crossover, we use a mutation probability, Pm,
to determine whether we need to perform a mutation (i.e. local improve-
ment). If yes, we then perform a local search in the neighborhood of the
spanning tree (called the search range), to find a better solution. In each
local search, we randomly select an arc that is not in the spanning tree
(whose flow is zero) and add this arc to the spanning tree, to form a non-
spanning tree containing a cycle. Finally, we use the flow augmentation
algorithm to adjust a non-spanning tree to become a spanning tree. The
process is repeated until all feasible spanning trees have been examined.

4.7. ELITISM

When using a traditional simple GA, the best individual in a population
may fail to produce good offspring in the next generation through cross-
over and mutation. The elitist strategy (Davis, 1991) remedies this potential
source of loss by copying the best individual in each generation into a suc-
ceeding generation. Consequently, for a population, which is dominated by
a superior individual, the speed is increased and the performance of GA
also appears to improve. The elitist strategy developed in this research
keeps a certain percentage of the best individuals, termed the elite ratio Pe,
in a population.

4.8. NEW POPULATIONS IN SUCCEEDING GENERATIONS

In each new generation, the population consists of three sets of individuals.
Given a preset Pe and Pp, as well as the population size Np, the first set
contains a total of PeNp elite individuals, which are copied from the best
PeNp individuals in the previous generation. The second set contains a
total of PpNp individuals that are randomly generated using either of the
two initial solution algorithms, LCISA and CCISA. Note that the purpose
of generating new individuals (some call them immigrants) is to provide an
opportunity for a more diverse search of the solution space. The third set
contains a total of (1)Pe)Pp)Np individuals that are generated by employ-
ing the crossover and mutation operations on the previous generation.
Note that two individuals in the previous generation are randomly selected
to perform the crossover operation to obtain two new individuals. Each of
them is then improved by performing the mutation operation. The

136 SHANGYAO YAN ET AL.

individuals in each of the three sets are generated until the preset number
of individuals is met. Suitable parameter values will be set for Pe and Pp

after the tests discussed in Section 6. Note that we have tried to use the
roulette wheel method to select individuals from the population for
the fourth set. We use a probability to determine whether to directly use
the local search to improve the selected individuals, which is different from
the local search (mutation) after crossover. Since the test results do not sig-
nificantly improve, we discard the fourth set, to save computation time.

5. Local Search Algorithms

To test the performance of the proposed GA, several advanced local search
algorithms, based on TA, GDA, and TS, are developed and compared. As
referred to Yan and Luo (1999), these algorithms are designed as two-stage
improvement algorithms. We first generate an initial feasible solution (a
feasible spanning tree), then gradually improve the initial solution by
exchanging arcs, as is done in mutation, until the criterion for stopping is
met. Note that if an exchange of arcs results in an infeasible spanning tree,
then we can use the least cost flow augmentation algorithm to adjust it to
become a feasible spanning tree.

5.1. INITIAL SOLUTION

From Yan and Luo (1999), for local search algorithms the better the initial
solution, the better the result that can usually be achieved. Therefore, we
can use the aforementioned CCISA to generate several solutions, and then
choose the best one as the initial solution.

5.2. THRESHOLD ACCEPTING (TA)

Our TA is similar to that in Yan and Luo (1999). We use the initial objec-
tive value multiplied by a fixed percentage as the initial threshold value.
The difference between the new objective value and the current objective
value divided by the current objective value determines whether the new
solution can be accepted or not. To trade off efficiency and effectiveness,
we use the EPOCH concept (Golden and Skiscim, 1986) to search the
neighborhood solutions. In particular, we suggest examining a limited
number (denoted as EPOCH) of arcs in every move. For simplicity,
EPOCH is suggested to be a multiple of the total number of nodes in the
test network, where the multiple is subjected to testing. We randomly
choose an EPOCH of arcs from all feasible arcs and then determine the
one that results in a solution that leads to maximum improvement among
the EPCOH of neighborhood solutions. The solution is then evaluated as
to whether it is acceptable as the next solution. Two convergence criteria

GLOBAL AND LOCAL SEARCH ALGORITHMS 137

are proposed. One is controlled by the total number of iterations (iter).
The other is controlled by the number of moves since the last update that
yields no improvement (i.e. no_update). For details of the algorithm, please
refer to Yan and Luo (1999). The parameters used in TA, such as the ini-
tial threshold value (T0), the number of different thresholds (num),
EPOCH, iter, and no_update, will be set after the tests.

5.3. GREAT DELUGE ALGORITHM (GDA)

GDA is similar to TA, except that GDA considers whether the objective
value of the new solution is below an absolute deluge level. The initial del-
uge level is set based on the best solution among the initial solutions. A
series of gradually decreasing ratios are set as the deluge levels. Note that
the initial deluge level G0 is 100%. If the objective value of a new solution
is lower than the current deluge level, then the new solution is accepted. If
the solution is better than the incumbent solution, then the incumbent
solution is updated. Similar to TA, the parameters of the initial deluge
level (G0), the number of different deluge levels (num), EPOCH, iter, and
no_update are set after the tests.

5.4. TA AND GDA WITH THE TABU SEARCH STRATEGY (TTA AND TGDA)

To improve the solution quality, and to avoid the inefficient degeneracy
problem, the TS strategy is incorporated into TA and GDA. To efficiently
and effectively record the tabu list, we refer to the auxiliary objective func-
tions designed in Yan and Luo (1998), as follows:

The kth objective function
X

ij2A
f kij ðxijÞ ¼

X

ij2A
rkijcij

ffiffiffiffiffi
xij
p

; ð4Þ

in which rkij is a random number (between 0 and 1) corresponding to arc (i,
j) in the kth objective function. The various objective function values asso-
ciated with a spanning tree can be used for the tabu reference. In particu-
lar, if the objective function values of two spanning trees are all the same,
then the two spanning trees are much the same. After numerous tests were
carried out, we found the five objective functions that yielded the most reli-
able results. The length of this tabu list is set after the tests.
Some spanning tree arc flows may be zero; this is called a degenerate

spanning tree. Consequently, when we eliminate a cycle by exchanging
arcs, if the leaving arc flow is 0, there is no change in the objective value.
To avoid inefficient searches due to degeneracy problems, we create a tabu
list that records recently entered arcs. If we select an arc to join the span-
ning tree that is in the tabu list, then it is discarded, thus avoiding moving
back to a previously degenerate solution. The length of this tabu list is set
after the tests. To conclude, two tabu lists are designed here. Tabu list 1

138 SHANGYAO YAN ET AL.

contains a number of the combinations of the five objective functions used
to examine the same spanning tree. Tabu list 2 contains a number of the
arcs used for examining the degenerate solutions. For convenience, we set
the two tabu list lengths to be the same. Certainly, tabu lists of different
lengths can be researched in the future.
In addition to the two aforementioned tabu lists, we also, from Glover

(1990), setup an aspiration mechanism, which states that if a new solution
found in tabu list 1, and its objective value is superior to that of the cur-
rent solution, then the new solution will be accepted.
The application of the two tabu lists and the aspiration mechanism are

summarized as the following two cases: (1) When a new solution that is
not the same as the current solution is found in the tabu list 1 (meaning
that it has been previously searched), then it is rejected unless it satisfies
the aspiration mechanism. (2) If the new solution is the same as the current
solution (i.e. it is in the tabu list 1 and is also a degenerate solution), and
it is also found in tabu list 2, then it is rejected. Note that in the second
case, to prevent too much restriction of search direction, moves to degener-
ate solutions that are not recorded are allowed. For other cases, new
moves are accepted unless they have been rejected by the TA or GDA
acceptance rules.
Finally, similar to TA and GDA, the parameters of TTA and TGDA,

such as the initial threshold value (T0) (the initial deluge level, G0), the
number of different thresholds (deluge levels, num), EPOCH, iter, no_up-
date, and the tabu list length (tabu_num) are set after the tests.

6. Numerical Tests

To evaluate the proposed algorithms, numerical testing is performed. To
generate a sufficient number of problem instances for testing, we first
design a network generator. The C++ computer language is used to code
all the programs for the network generator and the proposed algorithms.
Then suitable parameters for the algorithms are determined by testing.
Finally, we compare the computational results of the global search algo-
rithm and the four advanced local search algorithms. The tests are per-
formed on a PC K7-700 in the environment of Microsoft Windows 2000.

6.1. NETWORK GENERATOR

To test the algorithms, we design a network generator that generates con-
cave cost transportation network problems. Since the performance of the
meta-heuristics may be influenced by the problem scale and the parameters,
random numbers are used to generate randomized networks with various
scales and parameters. The approach is as follows: For every node in a

GLOBAL AND LOCAL SEARCH ALGORITHMS 139

given n-node network, we use a random number and a connected probabil-
ity to determine if it points to the nodes in its neighborhood. This neigh-
borhood is preset in order to prevent the generation of too many arcs in a
network. If yes, we randomly generate a positive cost coefficient (i.e. cij)
for the associated arc. After every node is examined for constructing arcs,
we examine whether the network is connected using a graph search tech-
nique. If yes, the network is connected; otherwise, we have several discon-
nected sub-networks. We then choose several nodes, each randomly from a
sub-network, and connect them to form a connected network.
As to the supply/demand nodes and their supplies/demands, we first ran-

domly choose some node to be a supply node, and randomly move for-
ward a number (Move_Num) of arcs to another node, which is used as the
demand node. We then randomly generate some amount, the supply/
demand for the node pair, meaning that this amount can flow through the
path from the supply node to the demand node. By repeating this process
several times (Ass_Num) (equal to the number of nodes times a control
parameter D, which will be mentioned later) and then summing up the
total supply/demand for each node, we generate a randomized network.
Note that we can find at least a feasible solution for any randomized

network. Moreover, since arc cost function values are positive, the objec-
tive function for each network is bounded by zero. As a result, there is an
optimal solution for every network.
To test the proposed algorithms, we design several types of networks

with different scales, as shown in Table 1. For each network type, we use a
parameter D, which represents the density of supply-demand nodes in all
nodes, to generate various networks. For the network node sizes of 50,
100, 150, and 500, we set D to be 0.2, 0.5, and 0.8, respectively, which gen-
erates 12 networks. For the networks with node sizes of 10 and 20, that is
their network scales are relatively small, we set D to be 0.5 to generate two
networks. As a result, there are altogether 14 networks in this test.
For convenience, a network which has 20 nodes with D equal to 0.5 is

denoted as 20_05; the other networks are similarly denoted. Table 1 shows
the network types with different numbers of nodes, arcs, and network den-
sities. Note that the network density is defined as the number of arcs

Table 1. Network types

No. of nodes No. of arcs Network density (%)

10 17 17.0

20 47 11.8

50 220 8.8

100 730 7.3

150 1117 5.0

500 4728 1.9

140 SHANGYAO YAN ET AL.

divided by the square of the number of nodes. The other parameters are
set as follows: The arc cost coefficient is set uniformly between 50 and 300
and the node supply/demand is set uniformly between 1 and 150.

6.2. GLOBAL SEARCH ALGORITHM – GENETIC ALGORITHM (GA)

In GA, the solution quality can be greatly influenced by the setting of the
parameters, such as the crossover probability, mutation probability,
population size, and so on. In general, the best parameter values are
problem-dependent. Thus, in this research we use 26 alternative parameter
combinations (denoted as Scenarios A–Z), and perform many tests using
different network sizes and different supply-demand node densities, to find
the suitable parameter combinations leading to good quality solutions.
Note that the parameters used are suitable for the problems in the
research. More testing should be conducted when they are applied to other
problems in the future.
For ease of comparison among different combinations of GA parameters,

the objective value for each scenario is compared with the smallest objective
value obtained from all parameter combinations for all algorithms. In par-
ticular, an error percentage, the relative difference from the best scenario, is
calculated for each scenario. Thus, the smaller the error percentage, the bet-
ter the parameter combination for a test network. Clearly, the smallest
error percentage, that is the best scenario, would be zero.
After testing 14 networks and 26 scenarios, we found that Scenarios J, O,

and W, on average, had better solutions than the others. Compared with
the best solutions for medium- and large-scale networks, the average errors
of the objective values for the three scenarios are 2.94, 2.86 and 3.19%,
respectively. The most notable findings are introduced in the following.

6.2.1. Population Size and the Number of Exchange Arcs in a Crossover

Except for the number of arcs to be exchanged (exchange arcs) in a crossover
on a spanning tree, all other parameters are related to the population size.
Therefore, the influence of the population size and the number of exchange
arcs on the solution quality will be discussed first. Three different population
sizes, 50, 100, and 150, are considered. Three different numbers of exchange
arcs, that is three exchange arcs, with a 0.5 arc exchange rate and a 0.9 arc
exchange rate, are considered. Note that the three exchange arcs are applied
so that only a few arcs in the spanning tree are exchanged. Also note that an
arc exchange rate of 0.9 (meaning that 90% of the arcs are to be exchanged)
is designed so that few arcs (i.e. 10%) are not exchanged, while an arc
exchange rate of 0.5 is designed to be between of the above two cases.
With three network scales, of 100, 150 and 500 nodes and three supply-

demand node density values (D), of 0.2, 0.5, and 0.8, there are in total 9

GLOBAL AND LOCAL SEARCH ALGORITHMS 141

networks and 81 problem instances for testing. The results show that for a
population size of 100 individuals, the use of three exchange arcs in a
crossover would result in the best solution, with an average error of
3.38%. It should be mentioned that the test results for all scenarios show
the best crossover probability to be 1.0. Therefore, we set the crossover
probability to be 1.0 in all scenarios in later tests.

6.2.2. Number of Groups for Roulette Wheel Selection

Four values of K, 1, 5, 20 and 30, are tested. The other parameters are set
as follows: the population size is 100, Pe ¼ 0.02, Pp ¼ 0.01, Pm ¼ 0.6; the
search range is 300 (i.e. investigating 300 solutions in the neighborhood of
the current solution); and an arc exchange rate of 0.9. Note that when K
equals 30, each group contains three or four individuals. For example, the
first group contains three individuals, which equals the rounded-off value of
1*100/30. The second group contains four individuals, which equals the
rounded-off value of 2*100/30)3. The others are calculated similarly. Tests
are performed on three large-scale networks (100, 150, and 500), each with
D values of 0.2, 0.5, and 0.8. Consequently, a total of 9 networks and 36
problem instances are tested. The results show that better solutions are
yielded for K equal to 5 and 30, with an average error of 3.30 and 3.19%,
respectively. The average errors for K equal to 1 and 20 are 8.07 and
4.76%, respectively. The average computation times for K equal to 5 and
30 are both less than those for K equal to 1 or 20. In conclusion, we can
say that it is best for K to be 30. It should be mentioned that, before the
evaluation, we performed preliminary tests on the K values of 1, 2, 3, 5, 10,
20, 30 and 50 for some of the nine networks. We found that the K values
for 2, 3, 10, and 50 resulted in poorer solution quality than when K was
equal to 5 or 30. Moreover, in the preliminary test results, we found that
the solution quality was not correlated with the K value. Therefore, for sim-
plicity, we chose the K values of 1, 5, 20 and 30 to complete the testing.

6.2.3. Mutation Probability and Search Range

In the literature the mutation probability has generally been set to be a
small number, usually below 0.02. However, given the highly degenerate
conditions in network flow problems, the algorithms may be inefficient for a
low mutation probability. Therefore, we use three values of Pm, 0.3, 0.6,
and 0.9, to represent the low, medium, and high mutation probability,
respectively. The other parameters are set as follows: the population
size ¼ 100, Pe ¼ 0.02, Pp ¼ 0.01; the arc exchange rate is 0.9; the search
range is 300; and the roulette wheel value K is 5. The tests are performed
on three large-scale networks (100, 150, and 500), each with D values of 0.2,
0.5, and 0.8. Consequently, a total of 9 networks and 27 problem instances

142 SHANGYAO YAN ET AL.

are tested. The results show that the best solutions when the mutation prob-
ability is equal to 0.9, with an average error of 2.86%. A mutation proba-
bility of 0.6, with an average error rate of 3.30%, produces worse solutions
than for 0.9, but better than that for 0.3, with an average error of 5.41%.
In addition, we use three exchange arcs to replace the 0.9 arc exchange

rate, with the other parameters being unchanged. Additional tests of the
mutation probability, Pm ¼ 0.3, 0.6 and 0.9, respectively, are performed on
three large-scale networks (100, 150, and 500), each with D values of 0.2,
0.5, and 0.8. Consequently, a total of 9 networks and 27 problem instances
are tested. The results show that the mutation probability of 0.6 yield the
best solutions, with an average error of 2.94%, 0.9 is the second, with an
average error of 3.59% and 0.3 is the worst, with an average error of 5.32%.
These results imply that we can obtain relatively good solutions when

fewer arcs are exchanged, with a mutation probability of 0.6, than when
more arcs are exchanged with a mutation probability of 0.9. Although the
solution qualities for the two scenarios are similar, the former requires less
computation time than the latter, so is considered better than the latter.
It should be mentioned that we also evaluate the mutation search range.

After many tests, we found that searching larger area in one move usually
yields better solutions than searching a smaller area in more moves. Here-
inafter, we test two strategies. Strategy one uses one move for local search,
while strategy two uses more moves to reach a local optimum. Twenty-six
different parameter combinations, with search ranges from 30 to 300, are
tested for strategy one. Twenty-four different parameter combinations, with
search ranges of 10, 30, 50, and 100, are tested for strategy two. The other
parameters are set as follows: population size ¼ 100, Pe ¼ 0.02, Pp ¼ 0.01,
Pm ¼ 0.6, three exchange arcs, and the roulette wheel value K is 5.
Three large-scale networks (100, 150, and 500), each with D values of

0.2, 0.5, and 0.8 are tested. Consequently, a total of 9 networks and 234
problem instances are tested for strategy one and a total of 9 networks and
216 problem instances are tested for strategy two. The results show that a
search range of 300, with strategy one, efficiently yields the best solution
quality, with an average error of 2.94%. We thus apply the search range of
300 and strategy one in later tests.

6.2.4. Elite Ratio

Three elite ratios of Pe, 0.01, 0.02, and 0.03, are tested, with the population
size ¼ 100, Pp ¼ 0.01, Pm ¼ 0.6, the number of exchange arcs ¼ 3, the
search range ¼ 300, and the roulette wheel value K ¼ 5. The tests are per-
formed on three large-scale networks (100, 150, and 500), each with D val-
ues of 0.2, 0.5, and 0.8. Consequently, a total of 9 networks and 27
problem instances are tested. The results showed that when D is 0.8, the

GLOBAL AND LOCAL SEARCH ALGORITHMS 143

solutions are not significantly different for the three elite ratios. For a D
value equal to 0.2 and 0.5, the elite ratio 0.02 yields the best solutions, with
an average error of 2.94%. The elite ratio of 0.03 yields the best second
solutions, with an average error of 3.31%, followed by 0.01, with an aver-
age error of 3.83%. These results indicate that, for a population of 100
individuals in each generation, copying the best two individuals from the
previous generation and incorporating them into the next generation
would, on average, produce better solutions than other elite ratios. We also
see that, as the elite ratio increases, the computation time decreases
slightly; however, the difference is not significant.

6.2.5. Immigrant ratio

Three immigrant ratios Pp, 0, 0.01 and 0.1, are tested, with the population
size ¼ 100, Pe ¼ 0.02, Pm ¼ 0.6, the number of exchange arcs ¼ 3, the search
range ¼ 300, and the roulette wheel value K ¼ 5. We also tested another sce-
nario with a search range ¼ 100, Pp ¼ 0.05, and the other parameters being
the same as the above. Tests are performed on three large-scale networks
(100, 150, and 500), each with D values of 0.2, 0.5, and 0.8. Consequently, a
total of 9 networks and 36 problem instances are tested.
The results show Pp ¼ 0.01 yields the best solutions (i.e. one immigrant

is allowed to enter the population in every generation), with an average
error of 3.30%. Pp ¼ 0 yields the worst solutions (i.e. no immigrant enters
the population), with an average error of 4.87%. The Pp ¼ 0.1 solutions
are in between, with an average error of 4.53%. The solutions obtained for
a search range ¼ 100 and Pp ¼ 0.05, with an average error of 3.38%, are
slightly worse that for a search range ¼ 300 and Pp ¼ 0.01.

6.2.6. Comparison of LCISA and CCISA

We first compare the objective values solved by LCISA and CCISA and
their influences on the GA’s performance. We set PA to be the proportion
of initial solutions in the initial population generated by CCISA. Similarly,
PB is set to be the proportion of immigrant solutions in the population of
the second and later generations generated by CCISA. For example, when
PA ¼ 0.6, it means that 60% of the initial solutions are generated using
CCISA and 40% using LCISA. When PB ¼ 0.6, it means that 60% of the
solutions are generated using CCISA and 40% using LCISA, for immigra-
tion into the second and later generations. Note that the number of solu-
tions that immigrate into a offspring generation using CCISA is equal to
Np*Pp*PB , where Np is the population size.
If we let Np be 100 and use network 150_05 and 9 combinations of

(PA, PB), such as (0.6, 1), (0.6, 0.6), (0.6, 0), (1, 1), (1, 0.6), (1, 0), (0, 1),
(0, 0.6), and (0, 0) for tests, the results will show that CCISA generates

144 SHANGYAO YAN ET AL.

better solutions than LCISA, although the former is more time-consuming
than the latter. As the LCISA solutions in the population increase, the
average solution quality decreases. Twenty-seven problem instances,
including nine combinations of (PA, PB) and three parameter scenarios (J,
O, and W), are tested further. The results show that a mixture of CCISA
and LCISA solutions in the initial population will yield, on average, better
solutions, probably due to the consideration of both solution quality and
diversity. In particular, the combination of (PA, PB) ¼ (0.6, 1.0) results in
the best solution quality, on average. Moreover, pure CCISA immigrants
(i.e. PB ¼ 1) yields better solutions than mixed CCISA and LCISA immi-
grants. In conclusion, the best solution quality is yielded when the initial
population is composed of 60% CCISA solutions and 40% LCISA
solutions, with 100% CCISA solutions as immigrants in each child
generation.

6.2.7. Evolution of Generations and Convergence

The number of evolutional generations directly affects the solution quality
of GA. Two indices are used to evaluate the GA’s performance. One is the
best objective value of the population for a generation, fg. The other is the
average objective value of the population for a generation, f. In each gen-
eration we use fg and f, which are solved using GA with the parameters
from Scenario A, and the best solution Fg obtained from all the parameter
scenarios, to discuss the GA’s convergence under the three scale networks,
500_08, 105_05 and 50_02. Note that similar results are obtained for the
other networks so they are not detailed here. As shown in Figures 2, 3 and
4, GA converges at 1000 generations for the large network (500_08), 500
generations for the medium network (150_05) and 100 generations for the
small network (50_02). We also find that f declines slowly in the large net-
work and rapidly in the small and middle networks, as shown in Figures 2,

0 200 400 600 800 1000

Evolutional Generation

25

30

35

40

45

50

55

60

65

O
bj

ec
tiv

e
V

al
ue

 (
in

 1
0,

00
0) f

fg

Fg

Figure 2. Convergence conditions for network (500_08).

GLOBAL AND LOCAL SEARCH ALGORITHMS 145

3 and 4. Note that in Figure 4 fg and Fg are the same when the evolutional
generation is greater than 2.

6.2.8. Summary

1. A mixture of CCISA and LCISA solutions in the initial population
will yield, on average, better solutions than either pure CCISA or
LCISA solutions.

2. A population size of 100 is better than 150 or others, in terms of
solution quality and computation time.

3. The number of exchange arcs only slightly affects the computation
time. The use of three exchange arcs and an arc exchange rate of 0.9
yield similar computation times, and are better than the others.

4. A suitable consideration of different objective value probabilities dur-
ing the selection step is better than random selection, without consid-
eration of the objective value. In particular, a division of 5 groups or
30 groups in the roulette wheel method yields better solutions than
others.

0 100 200 300 400 500
Evolutional Generation

7

8

9

10

11

12

13

O
bj

ec
tiv

e
V

al
ue

 (
in

 1
0,

00
0) f

fg

Fg

Figure 3. Convergence conditions for network (150_05).

0 100 200 300 400 500

12

14

16

18

20

O
bj

ec
tiv

e
V

al
ue

 (
in

 1
00

0) f

fg

Fg

Evolutional Generation

Figure 4. Convergence conditions for network (50_02).

146 SHANGYAO YAN ET AL.

5. Crossover and mutation coordination implies the combination of a
global search with a local search and usually yields good solutions.
In addition, in mutation searching a larger area in one move usu-
ally yields better solutions than searching smaller areas in more
moves.

6. Of the 26 tested parameter scenarios, J, O and W are superior to the
others. The seven parameters used in these three scenarios are shown
in Table 2.

6.3. ADVANCED LOCAL SEARCH ALGORITHMS

In this section, we perform tests to find suitable parameters for advanced
local search algorithms. To prevent the results from being significantly
affected by the application of random probability, while still considering
computation times, we perform three tests for each parameter scenario.
Note that the parameters obtained are only suitable for problems tested
with the proposed algorithms. More tests must be performed and verified
when applied to other problems in the future.

6.3.1. Initial Solution

We generated 1000 solutions using CCISA, and selected the best solution
among them as the initial solution. To save time, the tests were performed
on two medium networks (100 and 150), each with D values of 0.2, 0.5,
and 0.8. Consequently, a total of six networks and six problem instances
were tested. The results showed that there was still significant difference
between each initial solution and the best solution, with the error gap
between 14.06 and 36.8%.

6.3.2. System parameters for TA and GDA

We design nine scenarios (L1–L9) to test for such TA and GDA parame-
ters as the initial threshold value (T0), the initial deluge level (G0), the

Table 2. Parameter combinations in Scenarios J, O and W

Parameter Scenario

J O W

Population size 100 100 100

Elite ratio, Pe 0.02 0.02 0.02

Immigrant ratio, Pp 0.01 0.01 0.01

Mutation probability, Pm 0.6 0.9 0.6

Arc exchange (number) probability (3) 90% 90%

Search range 300 300 300

Number of roulette wheel groups, K 5 5 30

GLOBAL AND LOCAL SEARCH ALGORITHMS 147

number of different thresholds or deluge levels (num), EPOCH, iter, and
no_update. For each scenario, three tests are performed and the best solu-
tion selected for comparison. The results show the TA error gaps to be
between 2.32 and 4.88%, and the GDA error gaps to be between 2.70 and
6.40%. Of all the TA scenarios, Scenario L2 (T0 ¼ 0.5, num ¼ 60,
EPOCH ¼ 2n, no_update ¼ 30) yields better TA solutions than the others,
with an average error of 2.32%. Scenario L5 (G0 ¼ 0.39, num ¼ 100,
EPOCH ¼ n, no_update ¼ 50) yields better GDA solutions than the oth-
ers, with an average error of 2.70%.

6.3.3. System parameters for TTA and TGDA

In addition to the parameters used in TA and GDA, TTA and TGDA also
include the tabu list length (tabu_num). Ten scenarios (M1–M10) are
designed to test for the TTA and TGDA parameters. Each scenario is
tested three times and the best solution was selected for comparison. The
results show the TTA error gaps to be between 2.05 and 4.27%, and the
TGDA error gaps to be between 2.31 and 4.84%.
Of the scenarios, Scenario M7 (T0 ¼ 0.39, num ¼ 100, EPOCH ¼ n,

no_update ¼ 50, tabu_num ¼ 3) yields better TTA solutions than the oth-
ers, with an average error of 2.05%. Scenario M3 (G0 ¼ 0.5, num ¼ 100,
EPOCH ¼ n, no_update ¼ 50, tabu_num ¼ 7) yields better TGDA solu-
tions than the others, with an average error of 2.31%. The results also
show that TTA/TGDA with the incorporation of the TS technique is
improved over TA/GDA. Note that a tabu list length of 3, on average,
leads to better solutions than that of 7 or other alternatives.

6.3.4. Summary

The test results are summarized as follows:
1. It is time-consuming to detect cycles and augment flows in neighbor-

hood searches. Randomly choosing a number of candidate arcs for
neighborhood searches seems to be better, in terms of solution qual-
ity and computation time, than enumerating all arcs in neighbor-
hood.

2. The TS method is useful for resolving degeneracy problems in net-
work flows. In particular, TTA and TGDA are an improvement over
TA and GDA. The tabu list length needs not necessarily to be long,
but is dependent on the problem. A short tabu list may allow a
searching process with fewer constraints. The test results show that a
tabu list length of 3 is better than others.

3. The best parameter scenario, for each algorithm, is shown in Table 3.
The error gaps for the initial solutions, and solutions that use the algo-
rithms with their best parameters on different networks, are shown in

148 SHANGYAO YAN ET AL.

Table 4. We see from Table 4 that TTA (with Scenario M7) performs
the best, with an average error of 2.05%, while GDA (with Scenario
L5) performs the worst, with an average error of 2.70%.

6.4. COMPARISON OF GLOBAL AND LOCAL SEARCH ALGORITHMS

To compare the performance of the global search algorithm with that of
the advanced local search algorithms, we perform an additional test. The
best individual in the initial population of the global search algorithm is
selected as the initial solution for the local search algorithms. Every test
problem is then solved using the global search algorithm GA (with three
scenarios J, O, W) and the advanced local search algorithms TA (with sce-
nario L2), TTA (with scenario M7), GDA (with scenario L5), and TGDA
(with scenario M3).
Besides the 12 medium and large networks, the test networks also

include small size networks, such as networks 10_05 and 20_05. Note that
the optimal solutions of the small networks 10_05 and 20_05 can be found
by manual examination. As a result, the testing includes five algorithms,
seven parameter scenarios, 14 networks and 98 problem instances. The
results, in terms of the objective value error (compared with the best solu-
tions founded previously), are shown in Table 5.

Table 4. Test results for the four advanced local search algorithms

Network problem Initial solution

(CCISA)

Algorithm (scenario)

TA(L2) (%) TTA(M7) (%) GDA(L5) (%) TGDA(M3) (%)

100_02 14.60 4.20 4.20 4.20 4.20

100_05 27.10 2.50 3.80 4.00 0.00

100_08 30.80 1.30 0.00 1.90 3.10

150_02 30.90 0.90 0.90 2.00 0.90

150_05 32.20 2.90 0.80 0.80 4.00

150_08 36.80 2.10 2.60 3.20 1.60

Average 28.74 2.32 2.05 2.70 2.31

Table 3. The best TA, GDA, TTA and TGDA parameters

Parameter Algorithm (scenario)

TA (L2) TGDA (M3) GDA (L5) TTA (M7)

Initial threshold value, T0 0.5 0.5 0.39 0.39

No. of thresholds, num 60 100 100 100

EPOCH 2n N n n

no_update 30 50 50 50

tabu_num N/A 7 N/A 3

Note: N/A means not applicable.

GLOBAL AND LOCAL SEARCH ALGORITHMS 149

As shown in Table 5, the global search algorithm can find optimal solu-
tions for the two small-scale networks 10_05 and 20_05. The four advanced
local search algorithms can find optimal solutions for the small network
10_05, while near-optimal solutions, with a relative error of less than 0.2%
are found for network 20_05, which implies that the advanced local search
algorithms cannot efficiently ‘‘jump’’ out of local optima.
The global search algorithm results for scenarios J, O and W, are similar

to the previously tested results. Scenario O yields the best solution quality,
with an average error of 2.10%, scenario J is second, with an average error
of 2.20%, and scenario W is third, with an average error of 2.24%. The
average computation times for scenarios J, O and W are 1011.2, 1178.4
and 465.2 s, respectively.
Of the four advanced local search algorithms, GDA (scenario L5) yields

the best solution quality, with an average error of 3.96%, TTA (scenario
M7) is second, with an average error of 4.92%, TGDA (scenario M3) is
third, with an average error of 5.19%, while TA (scenario L2) is the worst,
with an average error of 5.47%. The average computation times for TA,
TTA, GDA and TGDA are 173.0, 258.7, 247.5 and 248.5 s, respectively.
To further compare the performance of the global search algorithm with

that of the advanced local search algorithms, we perform another test simi-
lar to the previous one. We first generate 14 test networks similar to the
previous ones. The network types are shown in Table 6. For simplicity,

Table 5. The test results for GA, TA, TTA, GDA and TGDA with the appropriate parameters

Network

problem

Initial

solution

(CCISA)

Algorithm (scenario)

(%) GA(J)

(%)

GA(O)

(%)

GA(W)

(%)

TA(L2)

(%)

TTA(M7)

(%)

GDA(L5)

(%)

TGDA(M3)

(%)

10_05 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20_05 1.1 0.0 0.0 0.0 0.2 0.2 0.2 0.2

50_02 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

50_05 14.7 0.0 2.3 0.0 3.5 0.0 4.1 3.5

50_08 24.5 0.0 0.0 0.0 1.8 3.0 0.0 1.8

100_02 22.5 5.6 3.7 5.2 12.6 9.9 5.3 12.6

100_05 33.0 7.7 4.4 3.7 5.9 8.1 4.3 5.7

100_08 32.8 3.4 3.6 1.0 10.0 9.5 9.8 7.8

150_02 38.5 5.2 5.1 0.3 10.2 8.7 8.6 8.7

150_05 41.8 2.5 1.6 5.4 12.6 9.8 7.5 9.7

150_08 46.0 0.0 3.1 0.5 3.2 6.2 5.2 3.5

500_02 69.3 0.0 2.8 6.1 2.7 4.8 4.7 7.0

500_05 69.4 3.5 1.3 3.0 8.9 4.9 4.2 5.9

500_08 65.9 2.9 1.5 6.2 5.0 3.8 1.6 6.2

Average 33.39 2.20 2.10 2.24 5.47 4.92 3.96 5.19

Note: The shadowed values indicate the relative minimum errors for the associated networks solved using

the associated algorithms.

150 SHANGYAO YAN ET AL.

every test problem is then solved using the global search algorithm GA
(with three scenarios J, O, W) and the advanced local search algorithms
TA (with scenario L2), TTA (with scenario M7), GDA (with scenario L5),
and TGDA (with scenario M3). The testing thus includes five algorithms,
seven parameter scenarios, 14 networks and 98 problem instances. The
results, in terms of the objective value error (compared with the best solu-
tions found for the seven parameter scenarios), are shown in Table 7.
Similar to the above tests, the global search algorithm performs, on aver-

age, better than the local search algorithms. In particular, for the global
search algorithm, scenario O yields the best solution quality, with an aver-
age error of 0.66%, scenario J is second, with an average error of 1.30%,
and scenario W is third, with an average error of 1.97%. The average com-
putation times for scenarios J, O and W are 1122.5, 1317.6 and 548.2 s,
respectively.

Table 7. Additional test results for GA, TA, TTA, GDA and TGDA, with the appropriate parameters

Network

problem

Initial

solution

(CCISA) (%)

Algorithm (scenario)

GA(J)

(%)

GA(O)

(%)

GA(W)

(%)

TA(L2)

(%)

TTA(M7)

(%)

GDA(L5)

(%)

TGDA(M3)

(%)

10_05 10.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20_05 7.2 1.4 0.0 3.0 3.0 3.0 3.0 3.0

50_02 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

50_05 19.3 0.0 0.0 0.0 6.6 6.7 1.4 7.2

50_08 16.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0

100_02 19.3 0.0 0.0 0.0 3.0 0.2 0.4 3.0

100_05 27.6 3.3 0.0 4.4 11.1 2.9 4.9 3.2

100_08 47.3 1.5 0.0 1.8 4.3 4.8 2.5 6.6

150_02 29.2 0.0 5.1 2.9 3.5 1.7 2.7 4.8

150_05 32.8 2.9 2.0 0.0 6.3 3.9 3.4 1.0

150_08 30.3 2.6 0.0 3.6 1.8 0.8 0.0 3.4

500_02 77.8 4.4 0.0 3.4 9.3 1.2 2.3 5.8

500_05 68.9 0.0 2.2 4.0 4.7 1.1 5.3 4.5

500_08 46.8 1.8 0.0 4.5 6.2 3.9 2.8 3.2

Average 31.26 1.30 0.66 1.97 4.27 2.16 2.05 3.26

Note: The shadowed values indicate the relative minimum errors for the associated networks solved using

the associated algorithms.

Table 6. Additional tested networks

No. of nodes No. of arcs Network density (%)

10 22 22.0

20 44 11.0

50 274 11.0

100 816 8.2

150 1328 5.9

500 5544 2.2

GLOBAL AND LOCAL SEARCH ALGORITHMS 151

Of the four advanced local search algorithms, GDA (scenario L5) yields
the best solution quality, with an average error of 2.05%, TTA (scenario
M7) is second, with an average error of 2.16%, TGDA (scenario M3) is
third, with an average error of 3.26%, while TA (scenario L2) is the worst,
with an average error of 4.27%. The average computation times for TA,
TTA, GDA and TGDA are 196.0, 292.3, 276.1 and 277.2 s, respectively.
To summarize the test results, for all the networks, GA performs better

than the four advanced local search algorithms in terms of solution quality,
although the former needs more computation time than the latter. How-
ever, for planning issues, the solution quality is far more important than
the computation time in practice. In particular, the average objective value
errors yielded by the three GA scenarios, in the first test, are between 2.10
and 2.24%, which is smaller than the 3.96–5.47% range yielded by the four
advanced local search algorithms. In the second test, the average objective
value errors yielded by the three GA scenarios in the first test are between
0.66% and 1.97%, which is smaller than the 2.05% to 4.27% range yielded
by the four advanced local search algorithms. Note that, in order to save
time, each network problem is solved only once in this additional test,
which might lead to the results being affected by random disturbances.
However, for the seven parameter scenarios, 28 tested networks and 196
tested problem instances, the average errors for the global search algorithm
are all superior to the four advanced local search algorithms. This indicates
that, on average, the global search algorithm is better than the four
advanced local search algorithms.

7. Conclusions and Suggestions

Based on the problem’s characteristics, we have developed a global search
algorithm to solve the minimum cost network flow problems with concave
arc costs. To evaluate the effectiveness of the proposed global search algo-
rithm, we also developed four advanced local search algorithms, based on
the threshold accepting algorithm, the GDA, and the tabu search algo-
rithm, for comparison purposes. A randomized network generator is
designed to produce test problems. All the computer programs are written
in C++ language and tested on a personal computer. The results indicate
that the proposed global search algorithm is more effective than the four
advanced local search algorithms for solving the concave cost transship-
ment problems. Some of the most notable conclusions are as follows:

1. The minimum cost network flow problem with concave arc costs is a
non-linear program (NLP) and is characterized as NP-hard. It does
not belong to the traditional combinatorial optimization problems
often formulated as integer programs. However, due to the problem’s

152 SHANGYAO YAN ET AL.

properties, its optimal solutions are located at extreme points that
are integers given all integer parameters. Hence, similar to traditional
integer programming problems, the candidates for optimal solutions
are spread throughout the linear solution set. As a result, traditional
combinatorial optimization techniques, such as global and local
search algorithms, which have rarely been applied to the problem,
can be employed to solve it.

2. The proposed encoding and crossover methods discussed in this
paper are different from those in the literature. In addition to the
breadth of the crossover search, the proposed global search algo-
rithm enhances the depth search by incorporating a mutation method
that employs a local search technique, which improves the solutions
generated by the crossover. With the population composition strate-
gies, as well as the initial solutions being tailored to the problem
characteristics, the proposed global search algorithm is able to solve
for good solutions to minimum cost network flow problem with con-
cave arc costs, as the test results show.

3. Four advanced local search algorithms, TA, TTA, GDA, and
TGDA, are tested and yield good solutions. Nevertheless, the pro-
posed global search algorithm performs still better than the four
advanced local search algorithms in terms of solution quality.

Several directions of future research are suggested as follows:
1. The assumptions made in this research, such as the concave arc cost

function of cij=
ffiffiffiffiffi
xij
p

, and the arc flow without an upper bound can be
relaxed, and the algorithms suitably modified in future. Moreover,
similar global search algorithms may be developed for other types of
concave cost objective functions.

2. Many problem instances of different sizes are generated using a ran-
dom network generator; the small-scale networks could be optimally
solved by manual examination. As for medium- or large-scale net-
works, since their optimal solutions are unknown, we only use the
solutions for each algorithm to define the relative errors for compari-
son purposes. Other methods, such as the branch-and-bound method,
could be developed in the future, to obtain good upper and lower
bounds, which are useful for evaluating the accuracy of a solution.

Acknowledgements

This research was supported by a grant (NSC-91-2211-E-008 -042) from
the National Science Council of Taiwan. We would like to thank the two
anonymous referees for their helpful comments and suggestions on the pre-
sentation of the paper.

GLOBAL AND LOCAL SEARCH ALGORITHMS 153

References

1. Abuali, F.N.,Wainwright, R.L. and SchoenefeldD.A. (1995), Determinant Factorization: a

new encoding scheme for spanning trees applied to the probabilistic minimum spanning tree
problem, Proceedings of the Sixth International Conference on Genetic Algorithms 470–477.

2. Ahuja, R.K., Maganti, T.L. and Orlin, J.B. (1993), Network Flows, Theory, Algorithms,

and Applications, Prentice Hall, Englewood Cliffs.
3. Amiri, A. and Pirkul, H. (1997), New formulation and relaxation to solve a concave cost

network flow problem, Journal of the Operational Research Society 48, 278–287.
4. Balakrishnan, A. and Graves S.C. (1989), A composite algorithm for a concave-cost

network flow problem, Networks 19, 175–202.
5. Blumenfeld, D.E., Burns, L.D., Diltz, J.D. and Daganzo, C.F. (1985), Analyzing trade-

offs between transportation, inventory, and production costs on freight network, Trans-

portation Research 19B, 361–380.
6. Booker, L.B. (1987), Improving search in genetic algorithms, In: Davis, L. (ed.), Genetic

Algorithms and Simulated Annealing, Pitman, London, pp. 61–73.

7. Charon, I. and Hurdy, O. (1993), The noising method: a new method for combinatorial
optimization, Operations Research Letters 14, 133–137.

8. Cheng, C.P., Liu, C.W. and Liu, C.C. (2000), Unit commitment by Lagrangian relaxation

and genetic algorithms, IEEE Transactions on Power Systems 15, (2).
9. Davis, L. (1987), Genetic Algorithm and Simulated Annealing, Morgan Kaufman Pub-

lishers, Los Altos, CA.
10. Davis, L. (1989), Adapting operator probabilities in genetic algorithms, Proceedings of the

Third International Conference on Genetic Algorithms, 61–69.
11. Davis, L. (1991), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York.
12. DeJong, K.A. (1975), Analysis of the behavior of a class of genetic adaptive systems,

Ph.D. dissertation, University of Michigan.
13. Dueck, G. (1993), New optimization heuristics: the great deluge algorithm and the record-

to-record travel, Journal of Computational Physics 104, 86–92.

14. Dueck, G. and Scheuer, T. (1990), Threshold accepting: a general purpose optimization
algorithm appearing superior to simulated annealing, Journal of Computational Physics
90, 161–175.

15. Kim, D. and Pardalos, P.M. (2000), Dynamic slope scaling and trust interval techniques

for solving concave piecewise linear network flow problems, Networks 35, 216–222.
16. Gallo, G., Sandi C. and Sodini, C. (1980), An algorithm for the min concave cost flow

problem, European Journal of Operation Research 4, 248–255.

17. Gallo, G. and Sandi, C. (1979), Adjacent extreme flows and application to min concave
cost flow problems, Networks 9, 95–121.

18. Gen, M. and Cheng, R. (1997), Genetic Algorithms and Engineering Design, Wiley Inter-

science Publication, MA.
19. Glover, F. and Laguna, M. (1997), Tabu Search, Kluwer Academic Publishers, Massa-

chusetts.

20. Glover, F. (1989), Tabu Search, Part I, ORSA Journal on Computing 1(3), 190–206.
21. Glover, F. (1990), Tabu Search- Part II, ORSA Journal on Computing 2(1), 4–32.
22. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley, Reading MA.

23. Golden, B.L., and Skiscim, C.C. (1986), Using stimulated annealing to solve routing and
location problems, Naval Research Logistic Quarterly 33, 261–279.

24. Gu, J. and Huang, X. (1994), Efficient local search with search space smoothing: a case

study of the traveling salesman problem (TSP), IEEE Transaction on Systems, Man and
Cybernetics 24, 728–739.

154 SHANGYAO YAN ET AL.

25. Guisewite, G.M. and Pardalos, P.M. (1993), A polynomial time solvable concave network

flow problems, Networks 23, 143–147.
26. Hall, R.W. (1983), Direct versus terminal freight routing on network with concave costs,

GMR-4517, Transportation Research Dept., GM Research Laboratories.

27. Jeffrey, A.J. and Christopher, R.H. (1994), On the use of non-stationary penalty functions
to solve nonlinear constrained optimization problems with GA’s, Department of Indus-
trial Engineering North Carolina State University, NC 27695–7906.

28. Jordan, W.C. (1986), Scale economies on multi-commodity networks, GMR-5579,
Operating Systems Research Dept., GM Research Laboratories.

29. Kershenbaum, A. (1997), When genetic algorithms work best, INFORMS Journal of

Computing 9(3), 253–254.
30. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), Optimization by simulated

annealing, Science 220, 671–680.
31. Kuhn, H.W. and Baumol, W.J. (1962), An approximate algorithm for the fixed-charge

transportation problem, Naval Res. Logistics Quarterly 9, 1–16.
32. Larsson, T., Migdalas, A. and Ronnqvist, M. (1994), A Lagrangian heuristic for the

capacitated concave minimum cost network flow problem, European Journal of Opera-

tional Research 78, 116–129.
33. Mathias, K.E. and Whitley, L.D. (1994), Initial performance comparisons for the delta

coding algorithm, The First IEEE Conference on Evolutionary Computation, Orlando,

Florida.
34. Nourie, F.J. and Guder, F. (1994), A restricted-entry method for a transportation problem

with piecewise-linear concave cost, Computer & Operations Research 21, 723–733.
35. Osman, I.H. and Kelly, J.P. (1996), Meta-Heuristics: An Overview, Meta-Heuristics:

Theory & Applications, Kluwer Academic Publishers, Boston, London, Dordrecht, 1–21.
36. Palmer, C.C. and Kershenbaum, A. (1995), An approach to a problem in network design

using genetic algorithms, Networks 26, 151–163.

37. Rech, P. and Barton, L.G. (1970), A Non-convex transportation algorithm, In: Beale,
E.M. (ed.), Applications of Mathematical Programming Techniques.

38. Reeves, C. (1997), Genetic algorithms for the operations researcher, INFORMS Journal

on Computing 9(3), 231–250.
39. Reeves, C.R. (1993), Modern Heuristic Techniques for Combinatorial Problems, John

Wiley and Sons, Inc.

40. Rudolph, G. (1994), Convergence properties of canonical genetic algorithms, IEEE
Transactions On Neural Networks 5, 96–101.

41. Seiichi, K., Maggie, K. and Wayne, W.D. (1995), Genetic Simulated Annealing and
Application to Non-slicing Floor plan Design, Baskin Center for Computer Engineering &

Information Sciences University of California, Santa Cruz, CA 95064.
42. Srinivas, M. and Patnaik, L.M. (1994), Adaptive probabilities of crossover and mutation

in genetic algorithms, IEEE Transaction On System Man, and Cybern 24, 656–667.

43. Suwan, R. and Sawased, T. (1999), Link capacity assignment in packet-switched net-
works: the case of piecewise linear concave cost function, IEICE Transaction Communi-
cations E82-B(10).

44. Taguhi, T., Ida. K. Gen, M. (1998), A genetic algorithm for optimal flow assignment in
computer network, Computers and Industrial Engineering 35(3–4), 535–538.

45. Thach, P.T. (1992), A decomposition method using a pricing mechanism for min concave

cost flow problems with a hierarchical structure, Mathematical Programming 53, 339–359.
46. Thierens, D. and Goldberg D. (1994), Elitist recombination: an integrated selection

recombination GA, The First IEEE Conference on Evolutionary Computation, Orlando,
Florida.

GLOBAL AND LOCAL SEARCH ALGORITHMS 155

47. Yaged, B. (1971), Minimum cost routing for static network models, Networks 1, 139–172.

48. Yan, S. (1996), Approximating reduced costs under degeneracy in a network flow problem
with side constraints, Networks 27, 267–278.

49. Yan, S., and Luo, S.C. (1998), A tabu search-based algorithm for concave cost trans-

portation network problems, Journal of the Chinese Institute of Engineers 21, 327–335.
50. Yan, S. and Luo, S.C. (1999), Probabilistic local search algorithms for concave cost

transportation network problems, European Journal of Operational Research 117, 511–

521.
51. Yan, S. and Yang, D.H. (1996), A decision support framework for handling schedule

perturbation, Transportation Research 30B, 405–419.

52. Zangwill, W.I. (1968), Minimum concave cost flows in certain networks, Management
Science 14, 429–450.

156 SHANGYAO YAN ET AL.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

